
Acta Cryst. (2002). B58, 389±397 Bruno et al. � Cambridge Structural Database software 389

research papers

Acta Crystallographica Section B

Structural
Science

ISSN 0108-7681

New software for searching the Cambridge Struc-
tural Database and visualizing crystal structures

Ian J. Bruno, Jason C. Cole,

Paul R. Edgington, Magnus

Kessler, Clare F. Macrae, Patrick

McCabe, Jonathan Pearson and

Robin Taylor*

Cambridge Crystallographic Data Centre, 12

Union Road, Cambridge CB2 1EZ, UK

Correspondence e-mail: taylor@ccdc.cam.ac.uk

2002 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Two new programs have been developed for searching the

Cambridge Structural Database (CSD) and visualizing

database entries: ConQuest and Mercury. The former is a

new search interface to the CSD, the latter is a high-

performance crystal-structure visualizer with extensive facil-

ities for exploring networks of intermolecular contacts.

Particular emphasis has been placed on making the programs

as intuitive as possible. Both ConQuest and Mercury run under

Windows and various types of Unix, including Linux.

Received 1 February 2002

Accepted 19 February 2002

1. Introduction

The Cambridge Structural Database (CSD; Allen, 2002)

contains the results of over a quarter of a million organic and

metallo-organic crystal structure analyses. It has long been a

valuable research tool in crystallography, structural chemistry

and drug design, as borne out by the large number of

published studies in which it has played a major part (Allen &

Motherwell, 2002; Orpen, 2002; Taylor, 2002) and the high

citation rating of several of these studies (Redman et al., 2001).

However, it became clear in the mid-1990s that the software

for searching and visualizing the database was in need of

major revision. While the functionality of the programs was

good, they had fallen behind contemporary standards of

usability and were not operable on the increasingly dominant

Windows platform. These two considerations prompted us to

embark on a concerted effort to provide improved programs

to CSD users.

From the outset, emphasis was placed on developing user-

friendly graphical user interfaces (GUIs) rather than

extending program functionality. Intuitive interfaces are

particularly important for CSD programs because of the

nature of the user-base. While the CSD has its coterie of

a®cionados, many others are occasional users, accessing the

database only every few weeks or so. Effectively, these can be

regarded as `new' users every time they access the programs,

because they do not build up suf®cient expertise to remember

how things work from one session to another. Designing

interfaces that would satisfy the needs of both expert and

casual users was therefore a key aim of our work.

This paper describes two new programs, ConQuest, for

searching the CSD, and Mercury, for visualizing crystal

structures. They are successors to the programs QUEST

(Allen et al., 1991) and PLUTO (Motherwell & Shields, 2000),

respectively.

research papers

390 Bruno et al. � Cambridge Structural Database software Acta Cryst. (2002). B58, 389±397

2. ConQuest

2.1. Program language and architecture

Fortran code for searching the CSD was developed from as

early as the 1970s, through to the 1990s (Allen et al., 1991).

The code performs a large variety of tasks, including two-

dimensional and three-dimensional substructure searching,

text searching, screening, geometry calculations, crystal-

lographic calculations, such as cell reduction, and so on.

However, it is poorly structured by modern standards and has

become dif®cult to extend and maintain. For these reasons, we

intend to replace it with an object-oriented C++ class library

(see below). However, it was impossible for us to do this on

the timescales required for the implementation of ConQuest.

We therefore decided on a compromise, viz. to use the existing

Fortran code for searching the CSD but provide an entirely

new front end. This would achieve our key aims ± greatly

increased user-friendliness and a Windows implementation ±

while making use of existing code, which, although not ideal,

provided the necessary, well tested search functionality.

Even with this simpli®cation, the project was challenging: it

is dif®cult to design from scratch an intuitive interface to

complex functionality. We recognized that a good design

would only be developed iteratively, by producing a series of

prototype dialogues and re®ning them via usability testing. For

this reason, we required a programming language that would

allow rapid prototyping. We also wished to use object-oriented

principles. These considerations led us to choose the Python

scripting language (van Rossum, 1991) and the Tk GUI toolkit

(Ousterhout, 1994), which have a well de®ned interface,

Tkinter (Lundh, 1999). Not only did this combination allow

extremely quick object-oriented prototyping, it facilitated the

development of highly platform-independent code. We made

use of Python Megawidgets (Telstra Corporation Ltd, 1997) to

achieve incorporation of sophisticated user-interface elements

without the need for low-level programming. Of particular

importance for us was the PyOpenGL module (Hugunin et al.,

1997), which provides bindings to the OpenGL libraries and

supports the Togl Tk widget (Paul & Bederson, 1996) for

OpenGL rendering. This is used in ConQuest to provide a

high-quality display of three-dimensional structures. Other

Python facilities that were useful included the ReportLab

Library (ReportLab Inc., 1998), a set of modules that enabled

us to write pdf ®les which, when coupled with the Adobe

Acrobat Viewer (Adobe Systems Inc., 1987), provide an easy

route for generating printed output.

Effecting communications between the new Python

ConQuest interface and the old Fortran search code (which we

re-named Thomas the Search Engine, or Thomas for short;

Awdry, 1946) was greatly facilitated by the fact that there is a

simple ASCII command-line CSD query language (Allen et

al., 1991). This is taken as input by Thomas and fully describes

the user's query. Therefore, it was necessary to (i) generate the

appropriate series of ASCII commands from the Python/Tk

ConQuest GUI; (ii) send this to Thomas as input; (iii) pick up

the resulting hit information from Thomas and send it back to

the GUI via a ®le-based asynchronous FIFO (®rst-in, ®rst-out)

buffer. Thomas performs a sequential search of the CSD,

producing hit structures in a strict order. In ConQuest,

however, the user has the ability to browse hit structures

interactively, in a forwards or backwards direction; this can be

done while the search is in progress and after it has ®nished.

Search results can also be saved to ®le. The required persistent

data storage and manipulation is achieved in ConQuest by the

use of the Metakit database library (Wippler, 1996).

2.2. User-interface design principles

GUI design was guided by the following principles.

(i) Although we were in¯uenced by conventional wisdom,

as catalogued, for instance, in the interface `hall of shame'

(Isys Information Architects, 1996), we determined that the

ultimate test of an interface is usability testing. Virtually every

interface component was therefore tested by observing users

who had never seen the program navigate their way without

help through a series of tasks. Most of our initial dialogue

designs were re®ned, sometimes very signi®cantly, in the light

of test outcomes.

(ii) Several possible routes to functionality were provided

when usability tests indicated this was necessary. For example,

tests suggested that users of the substructure drawing tool are

approximately equally divided into two camps: those who look

for an action button (e.g. to set the element type of an atom)

and then seek to pick the objects to which that action is to be

applied; and those who try to select the objects ®rst and then

look for the action button. Consequently, both routes were

usually implemented.

(iii) Pull-down menus accessible via the right-hand mouse

button were provided in those parts of the interface where

users might be expected to do highly interactive work with the

mouse (the two key areas are the substructure drawing tool

and the three-dimensional visualizer). This is very ef®cient,

since it reduces mouse movement (e.g. users have no need to

go to a top-level menu). On the other hand, tests showed that

many users do not think of clicking the right-hand mouse

button, so it is desirable to provide alternative routes to the

functionality. This was achieved in the substructure drawing

tool; in the three-dimensional visualizer, we contented

ourselves with displaying a permanent message alerting users

to the availability of a menu via the right-hand mouse button.

(iv) We followed many common interface conventions, not

because this is important per se but because what is conven-

tional is also familiar to users, and therefore intuitive. Obvious

examples which will be familiar to all PC users are a top-level

`File' button offering functions for saving and reading ®les,

exiting the program etc., and an `Edit' button in the

substructure drawing tool with options for copying, cutting,

pasting, undoing etc. We also looked at conventions estab-

lished in well known packages such as ChemDraw

(CambridgeSoft Corporation, 2001) and ISIS/Draw (MDL

Information Systems, Inc., 2001) and followed these where

appropriate.

(v) User errors are trapped, but only when it can be

established beyond doubt that they are indeed errors. For

example, typing in a negative cell parameter will cause the

relevant entry box to be highlighted and the `Search' button of

the dialogue box to be disabled so that the user cannot

proceed until the mistake is corrected. On the other hand, we

declined to check for apparent `scienti®c' errors, e.g. a

substructure with 5-valent carbon, since users know more

science than we could program into ConQuest (in fact,

chemical connectivities involving formally 5-valent C atoms

are found in the CSD, e.g. in some boron cages).

(vi) We tried to avoid pop-up messages of the type `Do you

really want to do that?', which are notoriously irritating to

users. Where we felt that such a precaution was necessary, we

provided it in a dialogue that also offered useful options,

hoping thereby to reduce annoyance. An obvious example is

that before ConQuest is closed, the user is asked which search

results they want to save. A less obvious example is that on

requesting a search to be started, users are given a dialogue

which allows them to set common search ®lters, subset selec-

tion etc. In both cases, a hidden purpose of the dialogues is to

allow users to change their minds, i.e. not close the program,

not start a search.

Acta Cryst. (2002). B58, 389±397 Bruno et al. � Cambridge Structural Database software 391

research papers

Table 1
Summary of ConQuest functionality.

Main panes/windows are listed in bold.

Option Functionality

Build Queries Query building; input/output of queries; query
management

Draw (i) Construction of two-dimensional (chemical
connectivity) substructure queries (including
variable atom/bond types, ring constraints, vari-
able attachment points etc.)

(ii) Construction of three-dimensional substructure
queries (constraints on distances, angles, torsions,
inter-plane angles, pharmacophore searches etc.)

(iii) Construction of nonbonded contact queries
(intermolecular and intramolecular hydrogen
bonds and other interactions)

Peptide Construction of peptide-sequence queries
Author/Journal Construction of bibliographic queries
Compound Name Construction of chemical name queries
Elements Construction of queries for chemical elements or

groups of elements
Formula Construction of formula queries, e.g. C3±6H12±24O<4

Space Group Construction of queries for exact space groups;
aspect symbols (e.g. C*/c), crystal systems

Unit Cell Construction of queries for reduced cell parameters
or authors' cell parameters

Z/Density Construction of queries for Z, Z0, density etc.
Experimental Construction of queries for experimental conditions

and results, e.g. R factor, X-ray/neutron diffrac-
tion, disorder, temperature etc.

All Text Construction of text and keyword queries, e.g.
polymorph, drug

Refcode Construction of queries to ®nd speci®c entries by
their CSD identi®ers

Combine Queries Boolean operations on queries
Search Setup (i) Choice of database or database subset to be

searched
(ii) Selection of common ®lters (e.g. R factor, exclude

disordered structures)
(iii) Selection of advanced options (standardize XÐ

H covalent bond lengths before testing for
hydrogen bonds)

View Results (i) Browsing of chemical diagrams, bibliographic,
chemical, crystallographic and experimental
information for search hits

(ii) Three-dimensional visualization
(iii) Suppression of unwanted hits
(iv) Output of search results in various formats, e.g.

CIF, MOL2
(v) Transfer of search results to other programs, e.g.

Mercury, Vista, Excel
(vi) Viewing of previous searches; viewing of entire

CSD

Figure 1
ConQuest dialogue box for building space-group queries.

Figure 2
Example substructure query in the ConQuest drawing window.

research papers

392 Bruno et al. � Cambridge Structural Database software Acta Cryst. (2002). B58, 389±397

(vii) We avoided the use of icons, preferring instead to label

buttons with words. This was based on the belief that, while

pictures nominally break down language barriers, icons are

often international only to the extent that they are equally

incomprehensible to all nationalities. We had the advantage,

of course, that virtually all scientists have at least a basic

understanding of English (although internationalization of

ConQuest by offering a choice of languages in the interface is

an important long-term goal).

(viii) Although ConQuest is fully documented, we regarded

it as suggestive of a GUI design failure if users wished to have

recourse to `Help' facilities. In passing, we noted that balloon

help and advisory messages in the program interface are

frequently ignored by users, so, although worthwhile, are of

limited value.

2.3. Program functionality

ConQuest program functionality (Table 1) closely mirrors

that of its predecessor QUEST (Allen et al., 1991), but is

presented in a very different way. The layout of functionality

in Table 1 re¯ects the organization of the ConQuest interface,

which has three main panes, `Build Queries', `Combine

Queries' and `View Results', together with a `Search Setup'

dialogue box that appears just prior to commencing a search.

2.3.1. `Build Queries'. Build Queries offers a choice of

dialogues for constructing queries. An example is illustrated in

Fig. 1. Undoubtedly the most important and complex is the

substructure drawing tool, which enables construction of two-

dimensional and three-dimensional substructure queries and

nonbonded-contact queries (e.g. Fig. 2). Substructure drawing

is achieved by dragging the cursor to draw bonds, and using

menu options to set atom and bond properties, cyclicity

constraints etc. Templates of common rings, chemical groups

and other substructures are provided as shortcuts and a

variety of edit options permit the size, shape and position of

the drawn substructure to be altered. Dialogue boxes allow

objects, such as vectors and planes, and parameters, such as

torsion angles and distances, to be de®ned and, in the case of

parameters, to be constrained to user-speci®ed numerical

limits.

Other dialogue boxes group together similar data items, as

indicated in Table 1. As queries are constructed, they are listed

in the Build Queries pane and can be edited, deleted, saved

and turned on or off (Fig. 3). Hitting the Search button in the

Build Queries pane is interpreted by the program as a request

to ®nd CSD entries which satisfy all of the queries that are

turned on, i.e. a logical and is applied.

2.3.2. `Combine Queries'. Combine Queries allows more

sophisticated logical operations on queries. Since Boolean

logic can be dif®cult, it is presented in ConQuest in `natural

language' form. Thus, three boxes in the interface are labelled

`must have' (i.e. Boolean and), `must not have' (i.e. Boolean

not) and `must have at least one of' (i.e. Boolean or). Query

icons are dragged into the appropriate box. For example, the

arrangement in Fig. 4 corresponds to the logical combination

of queries: (query 4) and (not query 3) and (query 1 or

query 2).

Presentation of logic in this way limits the complexity of

Boolean expressions that can be set up; for example, it would

not be possible to extend the above expression to: (query 4)

and (not query 3) and (query 1 or query 2) and (query 5 or

query 6).

Figure 3
ConQuest `Build Queries' pane showing four queries, three turned on and
one turned off. The result of performing a search will be to ®nd structures
that contain magnesium and a benzene ring and were determined at a
temperature below 273 K.

Figure 4
ConQuest `Combine Queries' pane. The result of performing a search will
be to ®nd structures that satisfy query 4, do not satisfy query 3, and satisfy
queries 1 or 2, or both. Query 5 has not been dragged into a box, and so is
ignored.

However, this limitation is worthwhile in order to achieve

the simplicity of presentation afforded by the Combine

Queries layout. More complex Boolean combinations than are

possible with Combine Queries can be achieved by running

two or more searches, con®ning the second search to the hit

list obtained from the ®rst, and so on. While slightly laborious,

this `Boolean combination in stages' has the advantage of

being much easier for users to understand.

2.3.3. `Search Setup'. When a Search button is hit, the

Search Setup dialogue box is shown. This allows selection of

the database or database subset to be searched (users may opt

to search the CSD and/or in-house databases in CSD format,

or may wish to con®ne the search to a previously created hit

list). It also offers common ®lters, such as R-factor limits.

2.3.4. `View Results'. Once a search is initiated, results are

transferred from the search engine to the View Results pane

as the search proceeds. Thus, early hits can be inspected while

the search is still running (important for some three-dimen-

sional searches which can take a long time). Hits are selected

for viewing from a scrolling list of `Refcodes' (CSD entry

identi®ers). Hits that are stereoisomers of one another are

hyperlinked. Information for each hit is displayed in a series of

panes, e.g. `Diagram' (chemical structure), `Chemical'

(compound name, formula etc.). This is something of a design

weakness, because it is not easily possible to see different

types of information at once, e.g. the three-dimensional

structure and the compound name. However, there is a new

option (scheduled for release in April 2002) to display the

chemical diagram in a separate window of its own. Hit infor-

mation is highlighted. Thus, those atoms and bonds in a

chemical diagram that match a search substructure are

coloured differently from the remainder of the diagram; for a

text search, matching items of text are displayed with a

distinctive background colour. An example View Results

display is shown in Fig. 5.

Three-dimensional structures can be viewed in a visualizer

which offers basic functionality, such as a choice of display

styles, labelling options, measurement of parameters, display

of unit-cell contents, display of geometrical objects such as

centroids and least-squares mean planes, display of hit

substructures and output of displays in jpeg format. However,

we did not wish to complicate the ConQuest interface by

including in it complex visualization options that would only

be required by a minority of users. For advanced three-

dimensional visualization, therefore, lists of structures found

by ConQuest searches can be transferred easily to the Mercury

program (see below). Top-level menu options in View Results

allow search results to be saved in various formats, or data to

be transferred to Vista (CCDC, 1994) or Microsoft Excel for

statistical analysis and spreadsheeting. Individual entries in

the hit list can be suppressed if they are not wanted; this means

that they will continue to be visible in View Results but will

not be exported if ®les are saved or data transferred to other

programs.

During a ConQuest session, users may move freely between

the three main panes, start any number of searches, even if

previous searches are still running, or review the results of any

of these searches. Search results may be saved in the native

binary format of the program (a .cqs ®le). When read back in,

saved search results appear exactly as if they had just been

obtained. On exiting the program, users are asked whether

any searches are to be saved and whether searches that are

still running are to be aborted or allowed to continue to

completion (if the latter, the results can be viewed in a

subsequent ConQuest session).

Acta Cryst. (2002). B58, 389±397 Bruno et al. � Cambridge Structural Database software 393

research papers

Figure 5
ConQuest `View Results' pane showing the chemical diagram of hit entry
CAPLAC (Winkler & Dunitz, 1975).

Figure 6
Mercury main window with display showing a slice through the crystal
structure of caprolactam (Winkler & Dunitz, 1975).

research papers

394 Bruno et al. � Cambridge Structural Database software Acta Cryst. (2002). B58, 389±397

2.4. Supported platforms

ConQuest is currently supported on Windows 98, ME, NT,

2000 and XP, RedHat Linux 6.2 and above (and equivalents),

Solaris 2.6 and above, Irix 6.5 and above, and AIX 4.3 and

above.

3. Mercury

3.1. Program language and architecture

The development of Mercury was started about 2 years after

that of ConQuest, by which time we had begun to replace some

of the Fortran code in Thomas by C++ classes (in particular,

classes for holding and manipulating molecules and crystals).

Consequently, we decided that Mercury would use no legacy

code but would be entirely written in object-oriented C++.

The decision to write Mercury in a different language from

ConQuest re¯ects a change in the relative importance of two

con¯icting factors: the need to deliver software to users as

quickly as possible, and the need to maximize the maintain-

ability and extensibility of code. The former priority was

dominant in the decision to use legacy Fortran code for

ConQuest; the latter had become more important (and more

realistically attainable) by the time Mercury development was

begun.

We used the C++ Qt library (Trolltech AS, 1995) for

building the GUI and OpenGL for three-dimensional graphics

rendering. Because of the time required for compilation,

development in Qt tends to be slightly slower than in the

Python/Tk scripting environment, but the performance of the

resulting interface is better (there being no use of interpreted

languages). A major factor leading to our decision to use Qt

was its signal/slot mechanism, which provides a way of

achieving separation between the code needed to respond to

user requests and the code needed to keep the GUI in an up-

to-date state. Qt supports a wide variety of platforms and

Figure 7
Mercury plots of (a) a single molecule of KAPNAQ (Nguyen et al., 2000) with the hydrogen bonds it forms, (b) the same molecule with a single hydogen-
bonded neighbour, (c) the original molecule with all hydrogen-bonded neighbours and (d) an extended hydrogen-bonded network.

provides easy solutions to a number of portability issues, such

as platform-speci®c ®le-naming conventions.

While we remain comfortable with our choice of Qt, we

nevertheless wish to keep as many options open as possible,

should we need to move to different GUI libraries in future.

Mercury was therefore designed to separate GUI-dependent

from GUI-independent code. As an example, the program

contains a Qt-speci®c class called QtRendererWidget and

another class, Renderer, which knows nothing about Qt. A

mouse event in the Mercury visualizer area (e.g. clicking at a

certain position) is recorded by QtRendererWidget and

passed to Renderer, which does the computation or data

manipulation that has been called for (e.g. detecting that the

click was on an atom and changing the state of that atom

accordingly). Essentially, QtRendererWidget is a Qt-speci®c

binding of the functionality provided by Renderer; it would be

easy to replace it by a class speci®c to a different GUI library

without changing the code in Renderer itself.

Similarly, the program is designed to separate graphics-

related from non-graphics-related code. For example, Atom

objects have attributes such as charge, radius and label but not

display properties such as colour. These are contained within a

GraphicsAtom object which contains an Atom together with

additional visualization-relevant data. Atom objects can

therefore be used for a wide variety of (non-visual) CSD-

related applications and extended to GraphicsAtom objects

when there is a need to render three-dimensional images.

3.2. User-interface design

GUI design was based on the same principles as outlined

above for ConQuest, although the differing functionalities of

the programs obviously lead to differences in the appearances

of their interfaces. Fig. 6 shows a screenshot of the main

Mercury window and an example crystal structure display. As

be®ts the program's primary purpose, the bulk of the main

window is given over to the three-dimensional graphics

display. The list of CSD refcodes on the right mimics the View

Results pane of ConQuest. Because of the highly interactive

nature of Mercury, many options are accessible by clicking the

right-hand mouse button in the display-area background.

Almost all of these options are also accessible by other routes.

The main window contains buttons and check-boxes for

switching on and off very common options, e.g. display of H

atoms, cell axes or short nonbonded contacts.

3.3. Program functionality

The primary purpose of Mercury is to provide advanced

functionality for viewing crystal structures in three dimen-

sions. This includes the following.

(i) The ability to load hit lists from ConQuest searches

(including calling up Mercury directly from ConQuest; see

above), or to browse the entire CSD or other databases in

CSD format, or to read in crystal structures in other common

formats (MOL2, PDB, CIF, MOL). On platforms that support

drag-and-drop, structure ®les can be opened in Mercury by

dragging the ®le name onto the Mercury desk-top icon or onto

the display area of an open Mercury window. When run in

-client mode, a Mercury session will listen for and respond

to requests from other programs to open ®les (this is how data

are transferred from ConQuest to Mercury).

(ii) The ability to rotate, translate and scale the three-

dimensional crystal structure display and to view down cell

axes, reciprocal cell axes and normals to planes.

(iii) The usual range of three-dimensional visualization

options (different display styles, colouring and labelling

options, ability to hide and then redisplay atoms, molecules

etc.).

(iv) The ability to measure distances, angles and torsion

angles.

(v) The ability to create and display centroids, least-squares

mean planes and Miller planes.

(vi) The ability to display unit-cell axes and the contents of

any number of unit cells in any direction (including fractions

of unit cells).

(vii) The ability to display a slice through the crystal in any

direction. For example, Fig. 6 shows molecules in the structure

of caprolactam (Winkler & Dunitz, 1975) whose centroids lie

within 2.5 AÊ of the (31�1) Miller plane. Displays such as this can

be useful in rationalizing crystal morphology and predicting

how to control it (Clydesdale et al., 1997).

(viii) The ability to undo and redo actions.

(ix) The ability to save the display as a ®le of molecules or as

a graphics image, and, on a PC, to copy images onto the

clipboard. Mercury has its own binary format (the .mry ®le)

which enables displays to be saved and then read back in

again, such that all program settings (except view direction

and scale) are retained.

Without doubt, the most important functionality in Mercury

is the ability to locate, display and build networks of inter-

molecular and/or intramolecular hydrogen bonds, short non-

bonded contacts, and user-speci®ed types of contacts. The user

begins by de®ning the types of nonbonded contacts that are of

interest. Typical examples are (i) intermolecular hydrogen

bonds between ammonium donors and carboxylate acceptors,

(ii) any intermolecular contact shorter than the sum of the van

der Waals radii of the atoms involved, or (iii) intermolecular

or intramolecular Cl� � �O contacts in the range 2±4 AÊ . A

program option is then used to ®nd all the contacts of the types

thus de®ned that are formed by the molecules in the crystal-

lographic asymmetric unit. For example, Fig. 7(a) shows the

OH� � �O hydrogen-bond contacts found by Mercury for a

molecule in the crystal structure KAPNAQ (4,8-dimethylbi-

cyclo[3.3.1]nonane-2,6-diol; Nguyen et al., 2000). This starting

point can then be used to build a network of contacts in the

extended crystal structure, following the methodology of

Motherwell & Shields (2000). For example, clicking on an

individual contact with the mouse causes the neighbouring

molecule to be shown in full (Fig. 7b). Clicking on an `Expand

All' button causes all neighbouring molecules to be shown

(Fig. 7c). This feature can be used repetitively (Fig. 7d).

Judicious use of the contact-searching functionality in

tandem with network expansion allows the packing in a crystal

structure to be explored with ease. Molecules can be coloured

Acta Cryst. (2002). B58, 389±397 Bruno et al. � Cambridge Structural Database software 395

research papers

research papers

396 Bruno et al. � Cambridge Structural Database software Acta Cryst. (2002). B58, 389±397

by symmetry equivalence (i.e. symmetry-related molecules

assigned the same colour) to aid interpretation of crystal

packing; this is particularly useful for structures with Z0 > 1.

Default de®nitions of hydrogen bonds and short nonbonded

contacts are provided. This means that all key contacts formed

by a molecule in a crystal structure can be found with one

mouse click.

3.4. Supported platforms

Mercury is currently supported on Windows 98, ME, NT,

2000 and XP, RedHat Linux 6.2 and above (and equivalents),

Solaris 2.6 and above, and Irix 6.5 and above.

4. Future directions

Although ConQuest and Mercury represent signi®cant steps

forward, particularly in making the CSD accessible to non-

expert users, much remains to be done. Obviously, we will

make further improvements to both programs. In addition,

there are three main areas in which we seek to advance. First,

we aim to replace most of our legacy code with a new object-

oriented C++ Toolkit, containing classes for holding molecular

and crystallographic data, performing geometry calculations,

substructure searching, screening, symmetry generation etc.

We have made signi®cant progress with this already, as indi-

cated by the fact that the new Toolkit provides all the crys-

tallographic functionality in Mercury, but several person-years

of effort are required for its completion.

Secondly, we need to improve the integration of our various

programs at the user-interface level. In particular, core

programs for searching and analysing the CSD, such as

ConQuest, Mercury, Vista (CCDC, 1994) and IsoGen (Bruno

et al., 1997), have separate interfaces with different `look-and-

feel' characteristics (although this is less so for the two most

recent programs, ConQuest and Mercury). We need to build

common user-interface components that will be shared

between the programs. This will improve both ease of main-

tenance and user-friendliness.

Finally, we will continue our development of `knowledge

bases' and applications software driven by these knowledge

bases. Our aim is to extract key types of information from the

CSD and make them available in derivative databases, so that

they can be easily viewed by users at a GUI and also accessed

by an application through a programming interface. The ®rst

example of such a product was IsoStar (Bruno et al., 1997),

which is a knowledge base of intermolecular interactions. It

contains information about a huge variety of nonbonded

contacts, taken not only from small-molecule (CSD) structures

but also from protein±ligand complexes. IsoStar is used by the

applications program SuperStar (Verdonk et al., 1999, 2001) to

predict binding `hot spots' in enzyme active sites. The

predictions are entirely knowledge-based, i.e. derive solely

from IsoStar data. SuperStar therefore exempli®es a program

that answers a speci®c question of relevance to drug design

and does so by manipulating data derived ultimately and

solely from a crystallographic database. Use of the CSD

`behind the scenes' in this way seems to us a most powerful

way of exploiting crystal structure data and one which we

intend to develop much further; for example, we are now

developing a knowledge base of intramolecular geometry

data.

Most of the staff of the Cambridge Crystallographic Data

Centre, and many external users, helped in program devel-

opment by providing feedback on interfaces. Frank Allen,

Karen Lipscomb, Steve Maginn and David Watson contrib-

uted to user documentation. Frank Allen, Sam Motherwell

and Greg Shields provided invaluable scienti®c advice. Lucia

Rodriguez-Monge contributed to the CIF reader used by

Mercury and Lucy Purkis to the MOL reader.

References

Adobe Systems Inc. (1987). Adobe Acrobat Reader. Adobe Systems
Inc., San Jose, California, USA.

Allen, F. H. (2002). Acta Cryst. B58, 380±388.
Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O.,

Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. &
Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187±204.

Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407±422.
Awdry, W. V. (1946). Thomas the Tank Engine. Leicester, England:

Ward.
Bruno, I. J., Cole, J. C., Lommerse, J. P. M., Rowland, R. S., Taylor, R.

& Verdonk, M. L. (1997). J. Comput. Aid. Mol. Des. 11, 525±537.
CambridgeSoft Corporation (2001). ChemDraw. CambridgeSoft

Corporation, Cambridge, Massachusetts, USA.
CCDC (1994). Vista ± A Program for the Analysis and Display of

Data Retrieved from the CSD. Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge, England.

Clydesdale, G., Roberts, K. J. & Walker, E. M. (1997). Theoretical
Aspects and Computer Modeling of the Solid State, edited by A.
Gavezzotti, pp. 224±226. Chichester: Wiley.

Hugunin, J., Schwaller, T. & Ascher, D. (1997). PyOpenGL, http://
pyopengl.sourceforge.net/.

Lundh, F. (1999). Tkinter, http://www.pythonware.com/.
Isys Information Architects (1996). Interface Hall of Shame, http://

www.iarchitect.com/.
MDL Information Systems, Inc. (2001). ISIS/Draw. MDL Informa-

tion Systems Inc., San Leandro, California, USA.
Motherwell, W. D. S. & Shields, G. P. (2000). RPLUTO, http://

www.ccdc.cam.ac.uk/prods/rpluto/.
Nguyen, V. T., Bishop, R., Craig, D. C. & Scudder, M. L. (2000).

CrystEngComm, 7; see http://www.rsc.org/is/journals/current/cryst-
engcomm/cecpub.htm.

Orpen, A. G. (2002). Acta Cryst. B58,
Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Reading,

Massachusetts: Addison-Wesley.
Paul, B. & Bederson, B. (1996). Togl, http://togl.sourceforge.net/.
Redman, J., Willett, P., Allen, F. H. & Taylor, R. (2001). J. Appl. Cryst.

34, 375±380.
ReportLab Inc. (1998). ReportLab. ReportLab Inc., Highland Park,

New Jersey, USA.
Rossum, G. van (1991). Python, http://www.python.org/.
Taylor, R. (2002). Acta Cryst. D58, 879±888.
Telstra Corporation Ltd (1997). Python Megawidgets, http://

pmw.sourceforge.net/.
Trolltech AS (1995). Qt. Trolltech AS, Oslo, Norway.

Verdonk, M. L., Cole, J. C. & Taylor, R. (1999). J. Mol. Biol. 289,
1093±1108.

Verdonk, M. L., Cole, J. C., Watson, P., Gillet, V. & Willett, P. (2001).
J. Mol. Biol. 307, 841±859.

Winkler, F. K. & Dunitz, J. D. (1975). Acta Cryst. B31, 268±
269.

Wippler, J.-C. (1996). MetaKit. Equi4 Software, Houten, The
Netherlands.

Acta Cryst. (2002). B58, 389±397 Bruno et al. � Cambridge Structural Database software 397

research papers

